Aptus Data Labs delivers tailored Data Science and AI solutions, leveraging expert teams and advanced technology to transform data into actionable insights. We enhance business outcomes, provide ongoing support, and ensure top security standards.
Novel Tech Park, #46/4, GB Palya, Near Kudlu Gate, Hosur Main Road, Bengaluru, India, Pin – 560068
+91 8861769911
+91 8861799911
Monday to Friday : 9:30am - 6pm Saturday & Sunday : Closed
Our ready solutions can be implemented in various industries as business processes are largely common across domains. Some, such as AptCheck, may not straddle every business, the use cases are provided for each solution if you download the comprehensive brochure provided for every solution.
Categorizing and Segmenting User SMS Data Using NLP Techniques
Our client is an Infrastructure Neo Bank that is designed to redefine your banking experience and promote open banking. The client is building an employee neobank facilitating superior financial instruments and curated to perfectly fit the product to an employee’s needs.
To segregate information across multiple platforms. Information such as Income and Expenses made. But, the lack of understanding, the way they have spent during the month, w.r.t the amount spent on Shopping, Travel, Entertainment, EMI, Insurance, and many more.
This is a summary of what we delivered :
This is the impact we created with measurable outcomes for Backend and ML engine
This Expense Category Classification App is implemented as per the architecture below. There are 3 components on a large scale: · Web App · Android App · SDK
Firstly, the webapp user goes through the middleware/authentication layer and creates a client profile. Then, a unique secret is created for each organization which is given to the client. Additionally, this secret key is used to create a token for the client’s respective users in the SDK. Then, the Android App users sign up via OTP or google auth whereas the SDK is authenticated via the secret key and the token. After passing the Authentication layer/middleware, they get access to the API Service. Therefore, their messages are fetched via the SMS Receiver Service (Kafka) and classified via the ML Engine to get the structured SMS. Moreover, this data gets populated in the Database and is visible to the android users as well as the Web App Portal. Therefore, the user Interface of the WebApp enables the admin to view the classified data and their analytics.
The raw messages are cleaned and classified into transaction, non-transaction and payment reminder messages. Therefore, to predict the Merchant name from the SMS Named entity recognition (NER) is used. Furthermore, NER is a natural language processing (NLP) technique that automatically identifies named entities in a text. Moreover, the Merchant name and the due dates of payment remainder SMS are predicted using NER method. Hence, the Merchant name of transaction SMS are predicted and mapped with predefined categories. Additionally, the predefined category list consists of ATM, Bill, Crypto, E Commerce, Entertainment, Education, Food & Drinks, Food Delivery, Fuel, Groceries, Health, Home Service, Income, Insurance, Investment, Loan, Recharge, Rent, ITR, Retail, Salary, Travel, Wallet and Unknown.
Don't wait to harness the power of data science - contact Aptus Data Labs today and start seeing results.
If you’re looking to take your business to the next level with data science, we invite you to contact us today to schedule a consultation. Our team will work with you to assess your current data landscape and develop a customized solution that will help you gain valuable insights and drive growth.